Distribution of Eigenvalues for the Ensemble of Real Symmetric Palindromic Toeplitz Matrices

نویسندگان

  • ADAM MASSEY
  • STEVEN J. MILLER
  • JOHN SINSHEIMER
چکیده

Consider the ensemble of real symmetric Toeplitz matrices, each independent entry an i.i.d. random variable chosen from a fixed probability distribution p of mean 0, variance 1, and finite higher moments. Previous investigations showed that the limiting spectral measure (the density of normalized eigenvalues) converges (weakly and almost surely), independent of p, to a distribution which is almost the Gaussian. The deviations from Gaussian behavior can be interpreted as arising from obstructions to solutions of Diophantine equations. We show that these obstructions vanish if instead one considers real symmetric palindromic Toeplitz matrices (matrices where the first row is a palindrome), and the resulting spectral measures converge (weakly and almost surely) to the Gaussian.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution of Eigenvalues of Real Symmetric Palindromic Toeplitz Matrices and Circulant Matrices

Consider the ensemble of real symmetric Toeplitz matrices, each independent entry an i.i.d. random variable chosen from a fixed probability distribution p of mean 0, variance 1, and finite higher moments. Previous investigations showed that the limiting spectral measure (the density of normalized eigenvalues) converges weakly and almost surely, independent of p, to a distribution which is almos...

متن کامل

Distribution of Eigenvalues of Highly Palindromic Toeplitz Matrices

Consider the ensemble of real symmetric Toeplitz matrices whose entries are i.i.d random variables chosen from a fixed probability distribution p of mean 0, variance 1 and finite higher moments. Previous work [BDJ, HM] showed that the limiting spectral measures (the density of normalized eigenvalues) converge weakly and almost surely to a universal distribution almost that of the Gaussian, inde...

متن کامل

Eigenvalue Spacing Distribution for the Ensemble of Real Symmetric Toeplitz Matrices

Consider the ensemble of Real Symmetric Toeplitz Matrices, each entry iidrv from a fixed probability distribution p of mean 0, variance 1, and finite higher moments. The limiting spectral measure (the density of normalized eigenvalues) converges weakly to a new universal distribution with unbounded support, independent of p. This distribution’s moments are almost those of the Gaussian’s; the de...

متن کامل

Spectral statistics for ensembles of various real random matrices

We investigate spacing statistics for ensembles of various real random matrices where the matrixelements have various Probability Distribution Function (PDF: f(x)) including Gaussian. For two modifications of 2 × 2 matrices with various PDFs, we derived that spacing distribution p(s) of adjacent energy eigenvalues are distinct. Nevertheless, they show the linear level repulsion near s = 0 as αs...

متن کامل

Structured Hölder Condition Numbers for Multiple Eigenvalues

The sensitivity of a multiple eigenvalue of a matrix under perturbations can be measured by its Hölder condition number. Various extensions of this concept are considered. A meaningful notion of structured Hölder condition numbers is introduced and it is shown that many existing results on structured condition numbers for simple eigenvalues carry over to multiple eigenvalues. The structures inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005